Equivariant Cycles and Cancellation for Motivic Cohomology
نویسنده
چکیده
We introduce a Bredon motivic cohomology theory for smooth schemes defined over a field and equipped with an action by a finite group. These cohomology groups are defined for finite dimensional representations as the hypercohomology of complexes of equivariant correspondences in the equivariant Nisnevich topology. We generalize the theory of presheaves with transfers to the equivariant setting and prove a Cancellation Theorem.
منابع مشابه
Equivariant Motivic Cohomology
The present paper will form part of the author’s PhD thesis, which will concern in part the practical computation of the motivic cohomology and the equivariant motivic cohomology of homogeneous varieties, such as Stiefel manifolds, Grassmanians, and spaces of matrices with prescribed rank conditions. Nothing proved here is particularly surprising, but it seems to the author that the spectral se...
متن کاملRing structures of mod p equivariant cohomology rings and ring homomorphisms between them
In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...
متن کاملAn Atiyah-hirzebruch Spectral Sequence for Kr-theory
In recent years much attention has been given to a certain spectral sequence relating motivic cohomology to algebraic K-theory [Be, BL, FS, V3]. This spectral sequence takes on the form H(X,Z(− q 2 )) ⇒ K(X), where the H(X ;Z(t)) are the bi-graded motivic cohomology groups, and K(X) denotes the algebraic K-theory of X . It is useful in our context to use topologists’ notation and write K(X) for...
متن کاملEquivariant Intersection Theory
The purpose of this paper is to develop an equivariant intersection theory for actions of linear algebraic groups on algebraic schemes. The theory is based on our construction of equivariant Chow groups. They are algebraic analogues of equivariant cohomology groups which have all the functorial properties of ordinary Chow groups. In addition, they enjoy many of the properties of equivariant coh...
متن کامل1 6 N ov 2 00 5 ON A SPECTRAL SEQUENCE FOR EQUIVARIANT K - THEORY
We apply the machinery developed by the first-named author to the K-theory of coherent G-sheaves on a finite type G-scheme X over a field, where G is a finite group. This leads to a definition of G-equivariant higher Chow groups (different from the version constructed by Totaro) and an AtiyahHirzebruch spectral sequence from the G-equivariant higher Chow groups to the higher K-theory of coheren...
متن کامل